ZO-1 controls endothelial adherens junctions, cell–cell tension, angiogenesis, and barrier formation

نویسندگان

  • Olga Tornavaca
  • Minghao Chia
  • Neil Dufton
  • Lourdes Osuna Almagro
  • Daniel E. Conway
  • Anna M. Randi
  • Martin A. Schwartz
  • Karl Matter
  • Maria S. Balda
چکیده

Intercellular junctions are crucial for mechanotransduction, but whether tight junctions contribute to the regulation of cell-cell tension and adherens junctions is unknown. Here, we demonstrate that the tight junction protein ZO-1 regulates tension acting on VE-cadherin-based adherens junctions, cell migration, and barrier formation of primary endothelial cells, as well as angiogenesis in vitro and in vivo. ZO-1 depletion led to tight junction disruption, redistribution of active myosin II from junctions to stress fibers, reduced tension on VE-cadherin and loss of junctional mechanotransducers such as vinculin and PAK2, and induced vinculin dissociation from the α-catenin-VE-cadherin complex. Claudin-5 depletion only mimicked ZO-1 effects on barrier formation, whereas the effects on mechanotransducers were rescued by inhibition of ROCK and phenocopied by JAM-A, JACOP, or p114RhoGEF down-regulation. ZO-1 was required for junctional recruitment of JACOP, which, in turn, recruited p114RhoGEF. ZO-1 is thus a central regulator of VE-cadherin-dependent endothelial junctions that orchestrates the spatial actomyosin organization, tuning cell-cell tension, migration, angiogenesis, and barrier formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jcb_201404140 1..18

Endothelial cells (EC) cover the internal surface of blood and lymphatic vessels, and play key roles in vessel formation and function. Regulation of endothelial cell–cell junctions is critically important in inflammation and angiogenesis, and incorrect junctional permeability is a major contributing factor to morbidity and mortality in acute lung injury and sepsis (Weber et al., 2007; Haskard e...

متن کامل

ZO-1 recruitment to α-catenin--a novel mechanism for coupling the assembly of tight junctions to adherens junctions.

The formation of a barrier between epithelial cells is a fundamental determinant of cellular homeostasis, protecting underlying cells against pathogens, dehydration and damage. Assembly of the tight junction barrier is dependent upon neighboring epithelial cells binding to one another and forming adherens junctions, but the mechanism for how these processes are linked is poorly understood. Usin...

متن کامل

Neural Membranes and Barriers 1 Tight Junctions in the Blood–Brain Barrier

The blood–brain barrier (BBB) protects the neural microenvironment from changes of the blood composition. It is located in the endothelium, which is both seamless and interconnected by tight junctions. The restrictive paracellular diffusion barrier goes along with an extremely low rate of transcytosis and the expression of a high number of channels and transporters for molecules that cannot ent...

متن کامل

Partial characterization of the human retinal endothelial cell tight and adherens junction complexes.

PURPOSE In diabetic retinopathy and macular edema, the blood-retinal barrier fails to function properly, and there is transvascular leakage of proteins and solutes. The tight junction protein occludin and the adherens junction protein cadherin-5 have been shown to be critical to maintaining the endothelial barrier and regulating paracellular transport of large vessel endothelia. However, the ex...

متن کامل

Tight junctions of the blood-brain barrier: development, composition and regulation.

1. The blood-brain barrier is essential for the maintenance and regulation of the neural microenvironment. The main characteristic features of blood-brain barrier endothelial cells are an extremely low rate of transcytotic vesicles and a restrictive paracellular diffusion barrier. 2. Endothelial blood-brain barrier tight junctions differ from epithelial tight junctions, not only by distinct mor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 208  شماره 

صفحات  -

تاریخ انتشار 2015